IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, OCTOBER 1992 853

Representation and Presentation
of Requirements Knowledge

W. Lewis Johnson, Martin S. Feather, and David R. Harris

Abstract—This paper describes the approach to representation
and presentation of knowledge used in ARIES, an environment
to experiment with support for analysts in modeling target
domains and in entering and formalizing system requirements.
To effectively do this, ARIES must manage a variety of notations
so that analysts can enter information in a natural manner, and
ARIES can present it back in different notations and from different
viewpoints.

To provide this functionality we use a single, highly expressive,
internal representation for all information in the system. Our
system architecture separates representation and presentation,
in order to localize consistency and propagation issues. The
presentation architecture is tailored to be flexible enough so that
we can easily introduce new notations on top of the underly-
ing representation. We have coupled presentation knowledge to
specification evolution knowledge, thereby leveraging common
representations for both in order to provide automated focusing
support to users who need informative guidance in creating and
modifying specifications.

Index Terms—Knowledge-based software engineering, require-
ments analysis, software presentation, software reuse, software
specification, transformations.

I. INTRODUCTION

E have built an experimental requirements/specification

environment called ARIES' to investigate the support
of requirements analysts in evaluating system requirements
and codifying them in formal specifications. Our purpose has
been to explore representation and reasoning issues in four
key areas: presentation, reuse, reasoning, and evolution. Each
of these is, we believe, essential for providing automated
assistance to requirements engineering.

The status of ARIES is that of an experimental system—it
serves as a testbed for study of the facilities that a real system
would, we think, have to provide. As such, we have not
demonstrated the utility of ARIES by having real-life analysts
use it to support their actual activities. Rather, we ask the

Manuscript received December 1, 1991; revised July 1, 1992. This work
was sponsored in part by the Air Force Systems Command, Rome Air
Development Center, under contracts F30602-85-C-0221 and F30602-89-C-
0103, and in part by the Defense Advanced Research Projects Agency under
Contract NCC-2-520. Views and conclusions contained in this paper are the
authors’ and should not be interpreted as representing the official opinion or
policy of the U.S. Government or any agency thereof. Recommended by M.
Jarke and A. Borgida.

L. Johnson and M. Feather are with USC/Information Sciences Institute,
Marina del Rey, CA 90292-6695.

David Harris is with Lockheed Sanders, Signal Processing Center of
Technology, Nashua, NH 03061-0868.

IEEE Log Number 9202816.

! ARIES stands for Acquisition of Requirements and Incremental Evolution
of Specifications.

reader to share our assumption that a system something like
ARIES, in particular, a system with capabilities for representa-
tion and reasoning akin to those that we have built into ARIES,
would prove useful. The focus of this paper is on the means
by which we provide such capabilities.

The essence of our approach is to use a single highly
expressive internal representation for all information in the
system, and have available a variety of “presentations” for
viewing aspects of that information. In addition to simply
viewing information, we can also enter information into the
knowledge base via many of these presentations, and modify
existing information by direct manipulation of presentations.

The rest of this paper is structured as follows.

Section II describes the broader context of our work, namely
the goal of providing integrated knowledge-based support
for all aspects of the software life cycle. Our part of this
is to provide support for all aspects of requirements and
specification analysis. This leads to the assumptions that
underlie our design of ARIES, whose capabilities are sum-
marized briefly. Section III shows the analyst’s view of
ARIES through a detailed example of analyst/ARIES interaction.
Of particular interest are the ways in which the analyst
is permitted access to the requirements knowledge through
presentations tailored to the aspects that he/she would wish to
focus on. Section IV describes the knowledge representation
that we use, and the facilities that allow us to easily build
upon this representation. This extensibility is crucial to the
success of our approach. Section V describes how we build
the presentations that the analyst sees. We have striven to
make these presentations easy to construct and modify, so
that we may readily experiment with them, and add new ones
as needed. Section VI briefly outlines other aspects of our
system, namely the facilities it provides to support the analyst
in evolving and validating requirements. These also rely upon
the capabilities embodied in our internal representation and its
associated mechanisms. Section VII contrasts and compares
our approach to related efforts, and Section VIII summarizes
our approach and findings.

II. ASSUMPTIONS AND BACKGROUND

Our design decisions for ARIES follow from a perspective
on the requirements/specification process and on the modes of
analyst—system interaction necessary for effective automated
support. We begin by placing ARIES in the context of a broader
effort toward supporting software development, then briefly
outline our perspective (a more thorough discussion of which
has been published elsewhere [26], [27]), and finally discuss

0162-8828/92803.00 © 1992 IEEE

854 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, OCTOBER 1992

how and why we have constructed ARIES to support this
requirements/specification process.

2.1. The Broader Context of Software Development

The ongoing Knowledge-Based Software Assistant (KBSA)
program, of which ARIES is a product, was conceived as
an integrated knowledge-based system to support all aspects
of the software life cycle [17]. Such a system would offer
specification-based software development in which efficient
implementations are mechanically derived from executable
specifications. ARIES’s role within this effort is to support
the requirements and specification aspects of the software
lifecycle; one of the outputs of ARIES is a specification in
the ERSLA language [43], ready for the follow-on stage of
mechanical optimization. (ERSLA is Andersen Consulting’s
extension of the very-high-level programming language Refine
[36], adding more specification constructs to Refine).

ARIES builds on the results of earlier efforts: requirements
analysis, studied in Lockheed Sanders’s Knowledge-Based
Requirements Assistant [21], and specification construction,
validation, and evolution, studied in ISI’s Knowledge-Based
Specification Assistant [23], [24], [35].

2.2 Our Perspective on the Requirements/Specification Process

We envision a requirements/specification process which
results in software requirements specifications—descriptions at
whatever level of detail or formality is necessary—of systems
to be built. Our vision is of a seamless process in which there
is no distinction between “requirements” and “specifications.”
Our goal is to support the analyst in his/her major activities
of this process, which we identify as the following.

« Acquisition. the gathering of information about the prob-
lem. Analysts collect such information from a variety
of sources, including interviews with clients, and source
documents describing the domain in which the system
will operate.

* Reasoning: the analysis and combination of gathered
information. Analysts need to understand and reason
about large specifications, propagate design decisions
throughout the emerging system description, and merge
possibly conflicting requirements that have been acquired
from groups of analysts working simultaneously.

« Evolution: the modification of requirements and specifi-
cations. The analyst’s changing understanding of require-
ments leads to the desire to evolve the description. This
may be a response to altered circumstances, a correction
of inaccurate or overly ideal requirements, or a desire to
make use of similar pre-existing requirements.

* Presentation: the communication of gathered require-
ments. The fundamental goal of communication is to
pass information to designers and stakeholders (end-users,
procurement agents, etc.). Both textual and graphical
documents are the typical means to achieve such com-
munication.

2.3. Our Approach

We see the core challenge as being the analysts’ need to
deal with the large volume and wide diversity of knowledge

associated with the requirements engineering process.

This knowledge includes domain models, initial require-
ment conceptions, abstracted views of requirements, formal
descriptions of systems, and stereotypical ways to modify these
descriptions. ARIES embodies our ideas on how to support
analysts to deal effectively with such knowledge. Its design
features:

« a modularized central repository of requirements infor-

mation,

« a single, highly expressive internal knowledge represen-

tation scheme,

« communication between analyst and system in terms and

styles familiar to the analyst, and

« tool support for the analyst to manage, analyze, and

evolve requirements information.

In the remainder of this section we expand upon the
motivation for the above design, and briefly touch upon how
ARIES fulfills its supportive role; subsequent sections present
in more depth the system’s capabilities and how they are
achieved.

2.4. Modularized Central Repository

A central repository encourages the gathering together of
all pertinent requirements information into a common, shared
framework. Modularization is necessary to structure the large
volume of information, for purposes of supporting multiple
projects and analysts simultaneously, both to permit sharing
of common information, and to permit tolerance of divergent,
incompatible information. ARIES offers modularization though
structures called folders. By developing multiple folders, the
analyst(s) can keep separate requirements information. Folders
can inherit and import information from other folders, thus
providing for the sharing and transfer of information. Analysts
control this sharing, and in the course of typical specifica-
tion development, gradually increase the extent of sharing as
inconsistencies are resolved.

2.5. Highly Expressive Internal Knowledge
Representation Scheme

A single internal knowledge representation scheme provides
the agreed-upon representation with which all tools commu-
nicate inside the system. We place a heavy emphasis on
codification and use of domain knowledge in requirements
analysis. Although a number of researchers have identified
domain modeling as a key concern (e.g., Greenspan [8]), it
is given short shrift in typical practice. Requirements analysis
is usually narrowly focused on describing the requirements
for a single system. This is problematic if an organization
is interested in introducing more than one computer system
into an environment, or when the degree of computerization
of an organization is expected to increase over time. We
have been modeling particular domains within ARIES, and
experimenting with reusing such knowledge in the engineering
of requirements for multiple systems. ARIES even maintains
information about itself—the ARIES metamodel—within this
representation. High expressivity is necessary to capture the
multitude of forms of requirements knowledge, however it

JOHNSON et al.: REPRESENTATION AND PRESENTATION OF REQUIREMENTS KNOWLEDGE 855

has the drawback of making it harder (or even impossible)
to construct completely automatic tools that reason about and
otherwise manipulate the stored information.

2.6. Communication

Analysts must be able to input and observe requirements
in a manner with which they are familiar. If this were not
the case, there would be a detrimental disconnection between
the concerns residing inside analysts’ heads, and the way in
which they interacted with the system. To communicate with
analysts, the system translates both ways between analyst
styles, and the system’s internal knowledge representation.
Analysts and ARIES communicate through graphical, textual
and other structured presentations common to the analysis
community (state transition diagrams, taxonomies, decomposi-
tion hierarchies, information flow diagrams, as well as formal
specification languages). A structured text facility is of use
in constructing of on-line informal engineering notebooks,
and in maintaining traceability between pre-existing textual
requirements documents and the specifications that are the
product of an ARIES mediated development.

2.7. Tool Support

The system should help analysts in the performance of
their tasks, the major ones being management of information
(reusing, specializing, adapting, and sharing between analysts
and/or across problems), the analysis of the gathered informa-
tion (through simulation and the like), and the evolution of
requirements. This compromise is necessary in part because
of our choice of a highly expressive representation, for which
completely automatic tools are not available. ARIES provides
evolution transformations—executable, declarative represen-
tations for stereotypical changes to specifications. A library
of such transformations is available, and the system assists
the analyst in finding the transformation(s) appropriate to
achieving the specific changes desired. To support analysis,
ARIES offers capabilities to rapidly construct, populate, and
exercise executable specifications, deduction mechanisms to
propagate information through the specification, and abstrac-
tion mechanisms to extract simplified views of system de-
scriptions. In general, ARIES’s tools leverage analysts’ insight
and understanding by automating the repetitive and mechanical
aspects, but continuing to rely upon the analysts for direction
and control.

III. AN ILLUSTRATION OF USE

To convey a sense of the utility of the approach, and to act as
an example to anchor the details which will be presented in the
later sections, we show a scenario illustrating the use of ARIES.
The scenario illustrates what we believe is a typical cycle in the
evolution of requirements. While we have not tested the use of
ARIES to support real-life analysts in their actual activities, we
have striven to achieve a measure of reality by picking a real-
life complex domain as our major example. We first outline
the domain, and then turn to the details of the scenario.

3.1. The Domain

Our domain is the Federal Aviation Administration’s Ad-
vanced Automation System [22]. The goal of the Advanced
Automation Program is to develop the next generation of air
traffic control systems. Its requirements are imposed by the real
world (i.e., are not under our control), and hence we have had
to deal with the variety and volume of those requirements. We
have captured sections of the AAS requirements specification
in ARIES; we have also included information drawn from
manuals on flight procedures (e.g., [2]), and from interviews
with information processing specialists with the current air
traffic control automation system.

3.2. The Scenario

The abstract nature of our scenario is as follows.

1. The analyst reviews a partial requirements description,
developed via previous interaction with ARIES. The ana-
lyst identifies a deficiency in the current requirements.

2. The analyst decides how the requirements must be
modified in order to correct the deficiency, and employs
an evolution transformation to perform the modification.

3. The analyst reviews the modified requirements that re-
sulted from the previous step, setting the stage for the
process to repeat.

The complete Advanced Automation System includes sev-
eral computer systems, each encompassing a number of func-
tional areas, such as radar data processing, flight plan pro-
cessing, and traffic flow management. This example focuses
on one functional area, the process of transferring control of
aircraft between controllers and facilities, known as “handoff.”
Requirements pertaining to handoff are recorded in several
folders, the most important being a folder we appropriately
named handoff. At the beginning of the scenario, the
requirements for handoff have been partially identified and
formalized; the analyst needs to review the requirements in
this and other folders, in order to identify omissions and
inaccuracies.

3.2.1. Reviewing Requirements: ARIES provides a variety of
presentations for the analyst to use to view the contents of
the handoff folder. These presentations are displayed via
a graphical interface implemented on the X window system.
The figures show the contents of windows generated by the
interface—for windows with graphical contents, we show the
actual windows; for textual contents, just the text.

Fig. 1 shows part of the contents of the overview pre-
sentation of the handoff folder, summarizing the folder’s
contents (namely, declarations of events, i.e., actions which
may be performed by the AAS system or by its environment,
and relations between objects). Other relevant information,
such as the definitions of objects that can participate in the
relations and events (e.g., aircraft), happen not to be defined
in this folder, but are instead defined in other folders that this
folder makes reference to.

Graphical presentations can be appropriate for showing the
relationships between definitions. Fig. 2 shows the event tax-
onomy presentation for the event init-handoff. Event tax-
onomy presentations show the relationships between generic

856

DURATION:
HANDOFF-IN-PROGRESS :

HANDOFF - IN-PROGRESS-ACCEPTED:
HANDOFF:

INIT-HANDOFF:
AUTOMATIC-INIT-HANDOFF:
MANUAL-INIT-HANDOFF:
TOP-0F-BLOCK-ALTITUDE:
TIME-FOR-HANDOFF:

RELATION-DECLARATION
RELATION-DECLARATION
RELATION-DECLARATION
EVENT-DECLARATION
EVENT-DECLARATION
EVENT-DECLARATION
EVENT-DECLARATION
RELATION-DECLARATION
RELATION-DECLARATION

ALERT-CONTROLLER:
ACCEPT-HANDOFF:

EVENT-DECLARATION
EVENT-DECLARATION

Fig. 1. A portion of the overview presentation of the handoff folder.

and specialized event descriptions, in this case, between the
following events:

init-handof£, which initiates the process of handing

off control,

automatic-init-handoff, which is performed by the

air traffic control system to initiate handoff automatically,

e.g., when a aircraft approaches an airspace boundary, and

manual-init-handoff, which describes handoffs ini-

tiated by controller command.

Each bubble in the diagram has a two-line label; the top line
shows the name of the definition, the bottom line the name of
the folder in which that definition resides (in this case, they’re
all in the handof £ folder). In this static snapshot, names are
truncated; the actual interface displays the full names as the
mouse is moved over the bubbles. A line between bubbles
portraying events indicates the lower event is a specialization
of the upper event.

In order to see what requirements are associated with
init-handoff, its definition must be viewed in detail. For
this purpose, natural language is an appropriate medium to
use, since it makes it possible to compare formal descriptions
directly against informal requirements drawn from natural
language documents or acquired from clients. Fig. 3 shows
the contents of the English paraphrase presentation of init-
handoff.

3.2.2. Performing a Modification: The description of init-
handoff in Fig. 3 omits an important detail: it does not allow
for the possibility that handoff has been “disabled” (in practice,
controllers can explicitly “disable” handoff—both manual and
automatic—preventing it from occurring until it has been re-
“enabled”). In our scenario, we suppose that the analyst, after
viewing the init-handoff requirements, realizes this, and
now wishes to introduce and make use of a feature to enable
or disable handoff of individual aircraft.

This change is an instance of a stereotypical modification
step: whenever an event operates on a class of objects,
it might be useful to introduce a condition and add it as
an enabling condition on initiation of the event. Evolution
transformations were developed in order to carry out such
stereotypical modifications. The one that applies this case,
define-and-check-enabling-state, does all of the
following.

« It defines two states, an enabled state and a disabled state,

for some class of object.

* It defines two new events, one which moves an object

from the enabled state into the disabled state, and one

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, OCTOBER 1992

which moves an object from the disabled state into the
enabled state.

« Tt adds a new precondition to an event selected by the
user, ensuring that the event will not be initiated if it
operates on an object in the disabled state.

The analyst may retrieve the appropriate evolution trans-
formation by selecting one of the generic gestures listed on
the left side of the window in Fig. 2. These gestures are
applicable to any presentation that is rendered graphically;
the specific meaning depends upon the types of objects and
relationships shown in the presentation. In this case, selection
of the gesture “modify” causes ARIES to retrieve and present
in a menu all the transformations which have the effect of
modifying event declarations (because event declarations are
the content of this particular presentation). The transformations
themselves are represented within the ARIES knowledge base,
and hence the analyst can use ARIES to study the details of
particular transformations in order to determine the appropriate
one to apply. Once the analyst directs ARIES to apply a
particular transformation, further interaction occurs between
analyst and system to provide (or override default values for)
the transformation’s input parameters.

Since ARIES’s evolution mechanisms per se are mnot the

main focus of this paper, we omit further details of this
part of the scenario (but see Section VI for some discussion
of how evolution relates to representation, and [25] for our
perspective on the role of and support for evolution within the
requirements/specification process).
3.2.3. Reviewing the Results of the Transformation: The re-
sults of the transformation are changes to the knowledge
base of requirements. The analyst can review these results
by re-presenting the various views of init-handoff, and
comparing these to the old versions. For example, generation
of a new English paraphrase of init-handoff results in
the version shown in Fig. 4; note that the precondition of
the event has changed. If automatic-init-handoff or
manual-init-handoff were to be paraphrased, a similar
change to their preconditions would be seen because they are
specializations of init-handoff.

The analyst might also wish to view the new states and
transitions that have been created. Fig. 5 shows the state-
transition presentation displaying the states and transitions for
the changed version of init-handoff.

3.3. Summary of the Scenario

The above scenario shows what we believe is a typical
cycle of activity in requirements analysis—the analyst reviews
the existing state of the requirements, identifies a deficiency,
makes a correcting change, and reviews the changed re-
quirements. The key to this is ARIES’s ability to generate
presentations in a variety of styles with which the analyst
is likely to be familiar. When the analyst makes changes
to the requirements (through the application of evolution
transformations), the internal representation is modified, and
the analyst can then apply any of the presentations to study
the changed requirements. In the sections that follow we will
show how ARIES’s knowledge representation and associated
presentation capabilities make this interaction possible.

JOHNSON et al.: REPRESENTATION AND PRESENTATION OF REQUIREMENTS KNOWLEDGE 857

Event Taxonomy for INIT~HANDOFF
HODIFY
JoiN
seLiT
DESTROY
CREATE
DEMOTE
PROMOTE
SPLICE
REMOVE
INSERT
UPDRTE s - — g .
! Paransters n Up-A-Level d 1 ¥ ouic TN esct]
Fig. 2. Event taxonomy presentation for init-handoff.
INIT-HANDOFF is an action of the system. Its sole participant is make changes to the system’s information).
a track. To perform an init-handoff, the system sequentially does ..
the following two steps. * Both strong and weak expressivity are needed. Strongly
1. The system asserts that the HANDOFF-IN-PROGRESS relation expressive constructs are needed in order to define con-
associates TRACK, current-controller and
raceiving-controller. cepts precisely, especially those that will appear in de-
2. The system assigns the track-status of TRACK to tailed specifications of behavior and system invariants
crosstell. . .
(e.g., temporal and higher order logical operators). At the
There is a precondition that current-controller must control same time, analysts use less expressive, but more conve-

TRACK. There is a postcondition that TRACK must be track-status

crosstell. nient, notations during initial acquisition of requirements

(e.g., the event-taxonomy and state-transition diagrams
Fig. 3. English paraphrase presentation of the init-handoff event. that we saw in the previous section’s scenario).
* Partial sharing between representations must be sup-

INIT-HANDOFF is an action of the system. Its sole participant is ported to permlt l’nlﬂtlple prOJeCtS and analyStS to Operate

a track. To perform an init-handoff, the system sequentially does simultaneously. For example, it should be possible for one
the following two steps. 1

1. The system asserts that the HANDOFF-IN-PROGRESS relation p?rSOﬂ to WOrk OI‘.l aerraft handOff’ anOther to W0r1.< on

associates TRACK, current-controller and flight plan processing, and another to work on an entirely

receiving-controller.

2. The systen assigns the track-status of TRACK to different requirements specification—all of which rely on

crosstell. a common body of knowledge.
) . * Automated reasoning capabilities are required. It is gen-
There is a precondition that current-controller must control . . .
TRACK and disabled must not be true of TRACK. There is a erally recognized that highly expressive languages are
postcondition that TRACK must be track-status crosstell. harder to reason about, both for machines and for p80p18;
Fig. 4. New English paraphrase presentation of init-handoff. this paper will show how this prOblem is mitigated in our
approach.

* A variety of presentations must be available to view the

IV. THE UNDERLYING REPRESENTATION contents of the internal representation; in fact, it should

This section is concerned with how knowledge pertain- be possible to define new presentations more or less at
ing to requirements engineering is represented in ARIES. We will. Thus the representation must not be too closely tied
identify the following as the most important challenges that to any one acquisition medium.

representation and reasoning capabilities must meet.
* An extreme breadth of knowledge must be expressible. 4.1. Basic Features of the ARIES Knowledge Representation

Spec‘iﬁcations of system behavior, definitions of domain The basic units of system descriptions in ARIES are types, in-
terfm.nology, system organization, nonfunctional charac- sgnces, relations, events, and invariants. The types, instances,
teristics, must all be representable. The system must and relations are needed to represent the entity-relationship
even represent significant information about itself (in the models common in requirements engineering (e.g., [8], [19]).
case of ARIES, a metamodel of the different kinds of We designed ARIES’s representation to be free from many
requirements objects and their relationships, and also a of the limitations common to representations derived from
representation of the evolution transformations used to programming languages or relational data models. Generally

858 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, OCTOBER 1992

tate Transition Disoran)

GeSTURE:

MODEFY

PROMOTE

SPLICE

REHOVE

INSERT

State Transition Diagram for STD-ENABLED-HANDOFF60970

JOIN

SPLIT @

DESTROY

CREATE

DEMOTE NTER-DISABLED-HANDOFF
NTER -ENRELE D-HANDOFF
y

UPDATE

View (AR (= ‘

Fig. 5. State-transition presentation of handoff enablement.

these freedoms make requirements and domain models easier
to represent, but make reasoning less tractable.

¢ Each type can have multiple subtypes and supertypes.
In contrast, assuming at most a single supertype makes
certain kinds of processing, such as inheritance, easier to
compute, it limits the ability to express entity-relationship
models of domains.

 Each instance can be an instance of any number of types
simultaneously. Again, this freedom is needed in order to
represent complex entity-relationship models.

* Relations hold among any types of objects. This contrasts
with relational data models, in which relations are defined
over “atomic domains’—integers, strings, etc. It also
contrasts with frame-based systems in which relations are
stored only as slots on some special class of object called
a “frame” or a “knowledge base object.”

* Relations need not be binary, but can have arbitrary arity.
This makes it unnecessary to encode ternary relations as
binary relations on some artificial object.

* Relations are fully associative. This contrasts with ap-
proaches in which relations must be defined in pairs, one
mapping from the domain to the range and one mapping
from the range to the domain.

* Types and relations may be primitive or derived. If a type
is primitive, it holds for an instance only if the instance
is explicitly asserted to belong to the type or one of its
subtypes. If a type or relation is derived, it holds whenever
a defining predicate associated with that type or relation
is satisfied (e.g., the relation flying-at-high-altitude may
be derived by defining that it holds on each aircraft whose
altitude is above 20 000 ft).

* Events subsume all actions of the modeled system’s
processes (e.g., the AAS system’s handoff action), its
environment’s processes (e.g., movement of aircraft), and
ARIES’s own processes (e.g., evolution transformations).
Events have duration, possibly spanning multiple states in

succession, and involving multiple entities of the system.
This contrasts with frameworks in which events are
assumed always to occur instantaneously.

« Events can have preconditions, postconditions, and meth-
ods consisting of procedural steps. They may be explicitly
activated by other events, or may occur spontaneously
when their preconditions are met. They may have inputs
and outputs. However, event definitions can affect the
state of the system in ways other than generating outputs:
they can assert and remove relations between objects, and
create and destroy objects. A variety of behavior models
can be mapped onto this event model: for example,
state transitions in state transition diagrams are modeled
internally as events in ARIES.

« Invariants are predicates that are required to hold, either
at all times or whenever a particular event is active. Many
requirements on system behavior are naturally expressed
as invariants (e.g., aircraft in flight must maintain a
minimum separation). Nonfunctional characteristics are
also often expressible as invariants (e.g., the required
response time of the AAS system must be less than some
maximum).

4.2. Example

ARIES’s descriptions take the form of a collection of objects,
each of which represents some element of the system. These
objects participate in relations, relating the objects to other
objects or to values such as symbols, strings, or other objects.
These relations are stored in a database using the APS virtual-
memory database system [11].

Fig. 6 shows the definition of init-handoff, as dis-
played by the describe-object presentation. This displays the
object and its associated objects and values in an attribute-
value form suited to human viewing (for a glimpse of the ac-
tual machine representation; see Section 5.2.1). The definition
is represented as an object of type event-declaration. It

JOHNSON et al.: REPRESENTATION AND PRESENTATION OF REQUIREMENTS KNOWLEDGE 859

INIT-HANDOFF: Event-Declaration
Concept description:
The general definition of the process of initiating handoff
Folder: HANDOFF
Role O: CURRENT-CONTROLLER
Role 1: RECEIVING-CONTROLLER
Input parameters: TRACK: TRACK
Precondition: UNNAMED
Postcondition: UNNAMED
BODY: UNNAMED

Fig. 6. Describe-object presentation of init-handoff.

has a text string identifying what this definition is, associated
via the concept-description relation. The object is
related to a folder named handoff, via a relation called
component. It is related to two objects of type role, named
current-controller and receiving-controller;
these are associated with the event declaration via a role-of
relation. These “role” objects identify objects in the domain,
e.g., controllers, that participate in the event. The definition
has an input parameter named track, associated via the
parameter-of relation. It has a precondition, associated
via the precondition relation. The precondition prints as
unnamed, indicating that it has no name relation associated
with it.

Fig. 7 show a similar presentation of the precondition of
init-handoff. It shows that the object is an instance of
two types: enabling-pred, i.e., a predicate that is a precon-
dition of some event declaration, and predicate-query,
i.e, it is a predicate which queries whether some relation
holds. The relation being queried is control, associated
via the concept relation. The parameters used in the query
are current-controller and track, associated by the
actual-of relation. This precondition is thus a query testing
whether a control relationship holds between the current
controller and the track.

These examples illustrates key features of this method
of representation. First, the representation incorporates both
informal information (e.g., concept description text strings)
and formal representations (e.g., the precondition query). This
contrasts with most conventional requirements environments,
e.g., SREM [1], in which the use of formal representation is
much more limited, and individual requirements are recorded
only as informal text. Second, subcomponents of objects are
themselves objects. This fine-grained object representation
contrasts with software engineering environments such as CLF
[32] in which individual function definitions are recorded as
text strings, and parsers or compilers must be invoked in order
to interpret them.

4.2.1. Metamodel Relations: Each object in a system
description may participate in a variety of relations with
other objects. Examples of such relations are concept-
description, component, role-of, parameter-of,
precondition, concept, actual-of, and general-
ization. The complete set of relations supported is quite
large, for two reasons. First, the variety of information
that must be captured in the ARIES knowledge base,
including formalized requirements, informal descriptions, and
nonfunctional characteristics, is quite high. Second, relations
were included to support the various graphical presentations

UNNAMED: Enabling-Pred and Predicate-Query
CONCEPT: CONTROL
ACTUAL:

CURRENT~-CONTROLLER

TRACK

Fig. 7. Describe-object presentation of the precondition of init-handoff.

in ARIES: for every graphical presentation that depicts links
between objects, there is a relation in the metamodel that
corresponds to the link. In general, many of the abstract
relationships between components of an ARIES description that
are useful to support reasoning and processing are represented
as relations in the Metamodel.

4.3. Advanced Features of the ARIES Knowledge Representation

4.3.1. Specialization: ARIES makes extensive use of special-
ization hierarchies, more than is typical of many representation
schemes. For example, it supports specialization hierarchies
not only of relations, but also events, including the events
within the system’s own metamodel (e.g., those representing
evolution transformations). The key to this is a uniform
semantic framework within which specialization is defined
consistently for types, relations, and events. This framework
is described in detail elsewhere [27]. Briefly, when applied to
types, this notion of specialization reduces to simple logical
subsumption: if S is a specialization of T, then if z is an
instance of S it is also an instance of 7. When applied to
events, specialization means that the functional requirements
on the events are subsumed: if event declaration E is a
specialization of event declaration F, then every occurrence €
of E also meets preconditions and postconditions of F—for
example, manual-init-handoff is a specialization of
init-handoff, and hence inherits the preconditions of the
latter. This notion of event subsumption is compatible with
other common approaches to event hierarchies such as that of
Kautz [28].

4.3.2. Parameterized Concepts: The approach to special-
ization described above relies upon all concepts having multi-
ple roles, each of which have values assigned to them. Roles
may be defined in terms of other roles, e.g., the actor role of
takeoff is defined to be the same as the input of takeoff.
It is also possible to define concepts in which roles are declared
but unbound. Such concepts are called parameterized concepts.

For example, the ARIES knowledge base contains a reusable
definition of the concept of “tracker,” i.e., a system that
tracks the movements of objects such as aircraft. The ARIES
representation of tracker has unbound roles representing the
accuracy value (the maximum distance between the true loca-
tion of an object, and the predicted location claimed by the
tracker) and type of object being tracked. Any instance of this
concept must have those roles bound, e.g., to 100 feet and
commercial-aircraft, respectively.

Higher Order and Temporal Operators: Higher order op-
erators are included in order to define properties that hold
for entire classes of concepts. Temporal operators permit
expression of invariants that hold between system states at
different points in time.

860 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, OCTOBER 1992

An example of a concept that makes use of both is the
definition of first-come-first-served. This property
is higher order because it can hold for any process that handles
and acts on requests, i.e., it is a property of a particular class of
events. It is defined as a temporal relationship between requests
and responses: if two requests of the same server are made in
a particular order, the responses must be in the same order.

4.4. Structuring the ARIES Knowledge Representation

The contents of the ARIES knowledge base is organized in
workspaces and folders. Whenever an analyst is working on a
problem, it is in the context of a particular workspace. Each
workspace consists of a set of folders, and each folder consists
of a set of declarations, i.e., type, relation, event, instance, and
invariant declarations.

The ARIES folder system was designed to meet two objec-
tives, first, to support partial sharing among analysts working
on the same project, or on different projects, and second,
to support the reuse of knowledge across multiple projects,
especially domain knowledge that may not be specific to any
one software project.

Partial sharing is supported by means of a use hierarchy.
Each folder uses some set of other folders. The used folders
are searched whenever an analyst refers to a concept by name
in some presentation, in order to determine the referent of the
name. If two concepts with the same name exist in different
folders, the analyst may specify which definition takes priority
should both folders be used by a third folder.

Approximately 50 folders in the ARIES knowledge base are
marked as reusable—i.e., they contain information relevant
to a variety of system descriptions, not just to one. Domain
knowledge, such as properties of aircraft and airspaces, fall
into this category, as do general descriptions of activities such
as tracking and handoff. One might hope to build a sizable
knowledge base containing such information, and then use it
in a variety of applications. Unfortunately, it is impossible in
general to represent domain knowledge so that it can be usable
in an arbitrary application, since the choice of representation
depends upon the kind of reasoning about the domain that
is embodied in the design of the application. For example,
there is no one best way to model the behavior of aircraft
in flight. For a radar tracking system, the important aspect of
aircraft flight is its continuous dynamic behavior, how aircraft
maneuver in real time. For a traffic management system, the
individual maneuvers of the aircraft are unimportant; rather,
the concern is the overall flight plan, which can be represented
as a sequence of straight-line route segments.

In order to address this problem, reusable folders are orga-
nized into hierarchies, according to their degree of specificity
to a particular task. For example, multiple models of object
motion are included in the current ARIES knowledge base,
each in different folders. The most general version, in the
folder generic-actions, is not specific to any domain
or problem; some, such as traffic-light-vanilla-
behavior, are specific to road traffic control, and some, such
as maneuver, are specific to aviation. Furthermore, different
models are defined within the aviation domain: maneuver

models aircraft as moving in continuous trajectories over
time, and basic-descriptive-aircraft-move mod-
els motion as consisting of straight-line motion from source
to destination.

4.5. Self-Representation in ARIES

The general framework for representing knowledge is used
in ARIES to represent all domain knowledge in the system,
as well as substantial parts of the ARIES system itself. Thus
the knowledge base contains definitions of not only domain
types (e.g., aircraft), but also of types of knowledge base
objects (e.g., type-declaration). Likewise, in addition to
relations between domain types (e.g., the altitude relation
between aircraft and numbers), the ARIES knowledge base
includes relations between knowledge base objects (e.g., the
generalization relation between concept declarations
and their supertypes or generalizations).

This self-representational approach is particularly important
for the library of transformations, which are represented as
events. For each transformation, the inputs, outputs, precon-
ditions, and postconditions may be specified, just as events
in application domains are described. Transformations are
organized in a specialization hierarchy according to the same
subsumption principle that holds for events in general.

This self-representing approach affords several advantages.
Having declarative specifications of ARIES’s components
makes it easier for engineers to understand what those
components are and what properties they have. Tools for
describing and explaining knowledge base components, such
as the ARIES Paraphraser for generating natural language, may
be applied to components of the ARIES system itself.

At the same time, this self-specification approach results in a
certain amount of duplication. The ARIES representation is for
specifications, not for implementations. Thus for each specified
construct there is a corresponding implementation of that
construct. For example, for each transformation in the system
there is both a declarative specification, represented using
the ARIES representation, and an implemented Lisp function
that is called in order to execute the transformation. The
correspondence between specification and implementation is
automatically maintained by always defining transformations
by means of special Lisp macros that expand into both partial
specifications and Lisp implementations of the transforma-
tions.

An example of the use of self-representation is the system’s
display of the taxonomy of transformations below the trans-
formation add-relation-with-parameters, shown in
Fig. 8. Transformations lower in the taxonomy are special-
izations of those higher up, i.c., they achieve a superset
of changes. ARIES’s generation of this diagram is possible
because transformations, elements of the ARIES system, are
represented as events with the system’s knowledge base, and
as such can be manipulated as any other kind of events, in
particular, displayed as shown here in an event taxonomy
diagram (just as the init-handoff event was displayed
in Fig. 2).

JOHNSON er al.: REPRESENTATION AND PRESENTATION OF REQUIREMENTS KNOWLEDGE 861

GESTURES

MODIFY

JOIN

SPLIT

DESTROY

e Event Taxonomy 1
Event Taxonomy for ADD-RELATION-WITH-PARAMETERS

CREATE

OLB-INT: -LE]
K- TRANSF ORNAT 10N

DEMOTE

HIMIC RELHT

TRHNEFORIAT 1T

PROMOTE

SPLICE

REHOVE

INSERT

UPPATE

e R i P s v R] i

Fig. 8.

4.6. Abstraction and Extraction

The sum total of the capabilities outlined above comprise
ARIES’s knowledge representation scheme. While their design
facilitates broad expressivity and thus encourages the capture
of a wide range of requirements information, it inhibits au-
tomated reasoning and presentation. This is because typical
reasoning or presentation tools are able to deal with only a
subset of the expressible representations. Furthermore, of the
large amount of knowledge represented, for a given purpose
only some of it will be relevant. Our response to these
issues has been to define specialized representations on top
of the general internal representation. These specialized rep-
resentations abstract and extract the pertinent and manageable
information for the purpose at hand. For example, the event
taxonomy presentation of init-handoff (Fig. 2) dealt only
with the concepts of types, folders and their names and special-
ization relationships; furthermore, only the specific instances
of those concepts related to init-handoff were shown.
Thus in generating this presentation ARIES has extracted just
the appropriate information to portray. In this subsection
we explore how such extraction and abstraction is achieved;
consideration of the closely related issue of how to portray the
extracted information to the analyst is deferred until Section V.

The simplest forms of abstraction and extraction can be
defined as retrievals computed from the internal knowledge
representation scheme. For example, the transitive closure of
relations already existing in the representation, such as gen-
eralization, can be computed automatically at minimal
cost. Similarly, retrieving the names and folders of various
concepts is simply a matter of following the internal name
and component relation that links each concept with its name
and folder respectively. Three pragmatic classes of problems
impede this approach in general:

« retrieval computations may be intractable given our cur-

rent capabilities,

+ the internal representation may contain concepts that are

A taxonomy of transformations.

incompatible with the specialized representation, or

« the internal representation may have insufficient informa-
tion to complete the mapping to the specialized represen-
tation in an unambiguous manner.

Intractable Computations: The state-transition pre-
sentation (as was shown in Fig. 5) is one for which completely
automatic computation is intractable within ARIES. The reason
for this is that to derive the state-transition relations
automatically, it would be necessary to derive weakest
preconditions and strongest postconditions for arbitrary
events, and determine what state relations are implied by
those preconditions and postconditions. This computation
is extremely hard in the general case, involving symbolic
evaluation of the procedural definition of the event. Our
previous work on theorem-proving techniques for symbolic
evaluation [10] are potentially applicable, but we have
found such tools to be difficult to scale up and extend to
accommodate temporal and/or higher order operators, and thus
within the system they are still limited in their applicability.
Likewise, deriving specialization hierarchies of relations,
types, and events is difficult in the general case.

We circumvent this difficulty by relying upon the analyst
to aid in the construction and maintenance of this difficult-
to-compute information. For example, in the case of ARIES’S
internal representation of its own transformations, organization
of these into a specialization hierarchy relies upon assistance
from the system creator: ARIES does a partial, conservative
analysis (conservative, in the sense that the effects that it
deduces are always correct, but are not necessarily complete)
and it is our responsibility to explicitly assert those effects that
the system has failed to determine through analysis. We find
this cooperative processing, in which human and machine both
contribute to the reasoning task, to be an effective approach
to overcoming the problems of intractable computations.

For the purpose of state-transition presentations,ARIES relies
upon the analyst to indicate what is a state and what is

862 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, OCTOBER 1992

not—for example, the analysts may indicate that the sec-
ond parameter of the track-status relation, that links
a track to its status (one of the finite set of values
operational, training, maintenance, etc), is
the determiner of the state of the track; alternatively, the
analyst might direct that whether or not a track is in the
dropped relation is the indicator of a track’s state (dropped,
or not dropped). Having been given this indication, ARIES
maintains the information on states across the application of
evolution transformations. For example, the define-and-
check-enabling-state transformation of 3.2.2 not only
changes the internal representation of the events to which it is
applied, but also makes the corresponding changes to the state
information associated with those events.

4.6.2. Incompatibility: Incompatibility arises when the task
is to extract constructs whose realization within the internal
representation makes use of constructs not present in the
specialized representation. For example, when generating ER-
SLA (a specification-oriented extension of the very-high-level
programming language Refine) from the ARIES representation,
incompatibility arises because ERSLA does not support the use
of arbitrary relations, but rather uses sets and maps (e.g.,
in ERSLA one would use maps whose range is the set of
booleans, false, true, rather than unary relations). Thus
in generation of the ERSLA equivalents of ARIES requirements
knowledge, ARIES proceeds by first transforming the ARIES
representation of the constructs into a subset of the ARIES
internal representation that can be readily translated (e.g.,
ARIES’s unary relations are transformed into ARIES maps onto
booleans prior to direct translation into ERSLA).

4.6.3. Ambiguity and Incompleteness: Sometimes, special-
ized representations assume a more complete form of require-
ments knowledge than may be present in the ARIES knowledge
base. For example, the ARIES representation permits analysts
to delay commitment as to what category a knowledge base
object belongs to; an analyst can introduce a concept (e.g.,
flight), without committing to whether it is a type, event,
or some other construct; this incompleteness is a problem for
specialized representations that require constructs to belong to
specific categories.

Two methods are employed for handling such underspec-
ified constructs, depending upon the particular presentation
being employed. One method is to simply omit from the
presentation those objects that are not known definitely to be
viewable via a presentation. This method is used in the type
taxonomy presentation: objects that are not declared to be type
declarations are not viewable via this presentation. The other
method is to assign the knowledge base objects by default to
specific categories for the purpose of creating the presentation.
For example, in the Reusable Gist presentation underspecified
constructs are presented by default as instances. The choice
of methods depends upon whether the presentation is intended
to present all components of a given folder, or only selected
components of a folder.

4.7. Integrating Textual and Relational Representations

The relational representation used in the ARIES Metamodel
provides a uniformity that facilitates the development of

intelligent tools. Each tool can operate on a subset of the
relations in the knowledge base, or on abstract relations defined
in terms of other relations. Each tool can thus focus on an
abstract representation of interest to it.

There are some types of processing for which a relational
representation is unsuited. Since semantic networks may con-
tain cycles, traversal of the network must be done carefully
to avoid infinite loops. Each relation in the metamodel has
type and cardinality restrictions, which must be checked as
the knowledge base is updated. This checking can greatly slow
processing when massive updates to the knowledge base are
being made, as the case when folders are being loaded from
files on disk. Transformation processes, such as the translation
of the ARIES Metamodel into ERSLA, are most easily expressed
as mappings from textual patterns in one language onto textual
patterns in another language. This is not possible if the internal
representation is a collection of relations instead of text.
Finally, saving and restoring sections of the knowledge base to
disk files becomes complicated, because it requires translating
a nonlinear, cyclical representation into a linear textual form,
and reconstructing the same cycles in the restoration process.

In response to these concerns, the ARIES Metamodel has
been implemented so that it has both a textual and a relational
form. We use the relational database capabilities provided by
the APs system [11] as the uniform means to access all forms
of represented knowledge. However, a significant part of the
processing done within ARIES involves grammatical objects
(parse trees), for which we use the POPART language processing
system; a sizable subset of the types and relations in the
knowledge base are in fact realized in the form of parse trees.
The key to combining these two facilities is to use POPART’S
parse trees as implementations of APS’s relations. This is
possible because AP5 allows developers to select arbitrary
data structures to implement relations. Examples of such data
structures are trees, hash tables, and linked lists. The original
purpose of this capability was to permit the separation of
data structure selection and algorithm design. In ARIES, this
capability is used to allow APs to treat parse trees produced
by POPART as implementations of APs’s relations. In order
to allow AP5 to treat POPART parse trees as implementations
of relations, we had to define an operation on parse trees
corresponding to each of the primitive operations on relations,
asserting a relation, retracting a relation, festing a relation, etc.
Once this had been done, relations implemented as parse trees
could then be used just like any other APS relation, and tools
that operate on the representation need not be concerned with
which relations were realized in POPART and which were not,
unless those tools relied specifically upon POPART capabilities.

V. PRESENTATIONS

In this section we focus on the presentations that the users
interact with, and show how they are defined and linked to
the internal knowledge base.

Our fundamental goal is to give the analyst expedient access
to a wide variety of requirements information. To attain this
goal we needed to provide a variety of presentations and
translations between various representations of information.

JOHNSON et al.; REPRESENTATION AND PRESENTATION OF REQUIREMENTS KNOWLEDGE

5.1. Constructing Presentations: Information
Extraction, Layout, and Portrayal

Constructing a presentation involves three independent ac-
tivities:

« extraction of a (manageable) subset of objects from the

knowledge base to be presented,

« layout of the overall display of those objects on the screen,

and
« portrayal of the individual objects within that overall
display.
These activities are shown in Fig. 9. We next consider each
of these activities in detail, discuss the ARIES’s declarative
definition of presentations, and conclude with an example.
5.1.1. Extraction of Objects to be Presented: Because of the
large size of the knowledge base, it is inappropriate to present
all of its objects at once. Extraction is the process by which
a subset of those objects are chosen for presentation. The
results are accumulated into an abstract graph structure, which
serves as intermediary between the knowledge base and the
diagrammatic presentations. The simplicity of these abstract
graph structures eases the task of defining the diagrammatic
presentations, which need never be cognizant of the full
complexity of the knowledge base.
Extraction was discussed in Section 4.6. Some presentations
are extended to deal with the problems that may arise during
this abstraction process. For example, the taxonomic diagrams
present hierarchies as trees, yet internally the hierarchies may
be acyclic graphs. The approach in this case is to use the
presentation only to extract and portray descendents of a
given node, and to ignore some specialization relations if
necessary to produce a tree. If the analyst wishes to select
a parent of the given node for drawing a new tree, the analyst
is presented all options via a menu, and one is selected.
Thus it becomes apparent that the underlying representation
contains more than the presentation is showing. Another
case in point was discussed in Section 4.6.3, where it was
mentioned that some underspecified declarations cannot be
expressed in Reusable Gist. There the presented form was
defined in such a way that it would be evident to the analyst
that the underlying representation is different from what the
presentation would literally suggest. In general, it is the
responsibility of the presentation to handle such cases, and
somehow signal to the analyst that key information is missing
in the presentation.
5.1.2. Layout of the Overall Display: Layout styles encode
the syntactic organizational features of user interfaces. These
styles are defined independently of the threads that connect
the presentation objects to the information in the knowledge
base. Each style captures a particular approach to organizing
and aligning data for display on the screen. The follow-
ing comprise a representative sample of the available layout
styles.
* Flow-diagram—Directed graphs with labeled nodes
and edges, e.g., state-transition diagrams (Fig. 5).

*» Presentation-list—A linear list of objects, e.g.,
summarizing the contents of a folder by listing the names
and type signatures of all concepts in that folder (Fig. 1).

863

Presentation Object
graph structure

Layout
Styles

Fig. 9. Construction of init-handoff’s event-taxonomy presentation.

+ Matrix—Tabular presentations of data in row and col-
umn format, e.g., spreadsheets of nonfunctional require-
ments.

+ Pages—Textual output organized into pages, e.g., in-
formal (natural language) descriptions of concepts in the
knowledge base (Figs. 3 and 4).

5.1.3. Portrayal of Individual Objects: The portrayal of in-
dividual presentation objects involves icon display and content
display. Icons have shape, size, color (or gray scale), and or-
namentations. Contents range from very simple name labels to
complex textual blocks that are generated through a translation
process (the latter will be discussed in Section 5.2).

5.1.4. Declarative Definition of Presentations: In develop-

ing ARIES we recognized the need for a wide variety of
presentations, and the (continuing) need to be able to easily
experiment with, and rapidly modify, these presentations. This
led us to choose wherever possible a declarative style of
interface definition from which the corresponding interface is
generated. Alternatively, we could have chosen to hard-wire
each interface individually. Our selection trades some loss
of efficiency and restricted ability to fine-tune presentations
in return for rapid construction of modularized interfaces.
Presentation objects are organized into hierarchies and we take
advantage of inheritance of properties and generic approaches
to the creation of interface components. Generation of the
code to extract the information is relatively straightforward,
because the query itself is readily expressed in the AP5 query
language that implements our knowledge base. Generation
of the code to portray information on the screen is eased
by the fact that it must deal only with the abstract graph
structures common to, and tailored for, all the diagrammatic
presentations.
5.1.5. An Example of Constructing a Presentation: To illus-
trate the declarative definition of presentations, and how a
presentation of some object(s) is formed, we focus on the
event-taxonomy presentation and its use in constructing Fig.
2, where event init-handoff and its specializations were
displayed.

864

:KB/PO-INTERFACE (,(MAKE-POID

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, OCTOBER 1992

(DEFPRESENTATION EVENT-TAXONOMY ()
:NAME "EVENT TAXONOMY” name of presentation as will appear in menus
:CONCEPT-DESCRIPTION "SHOWING THE SPECIALIZATIONS OF AN EVENT.” menu documentation
:TOP-LEVEL? T
:GROUPING 'TERMINOLOGY
:METHOD ’PROJECTION
:MODE 'GRAPHICAL
{IMPLEMENTATION-MODEL 'UNBALANCED-TREE
:KB-TYPE ’EVENT-DECLARATION
:PO-EDITORS (CONS ’UP-A-LEVEL (TOP-LEVEL-ACTIONS))

directs that this appears in top-level menu of presentations
subgroup of menu in which this appears
currently commentary, i.e., ignored by the system
currently commentary
style of this presentation
type of knowledge base’s “seed” object being presented
edit actions available on
presentation; as well as all the (standard) top level actions, also includes one to move up a level
KB = Knowledge Base, PO = Presentation Object

:PO-NAME :VERTEX
:PO-TYPE ’(SHADOWED-CIRCLE)
:KB-TYPE 'EVENT-DECLARATION

:NAVIGATION (STANDARD-TREE-NAVIGATORS)
link to follow in knowledge base to eztract objects (nodes)
direction to follow aforementioned link

:KB-GETTER 'GENERALIZATION
:DIRECTION 'REVERSE
:KB-NAMER #’ FOLDER-AND-RELNAMES)))

defines nodes (a.k.a. vertices) of this presentation
choice of how objects (nodes) will be drawn
type of knowledge base objects being portrayed as nodes

navigations available on each node

function that, given a knowledge base
object, generates label for corresponding node

Fig. 10. Definition of Event Taxonomy presentation

Fig. 10 shows the definition of the event-taxonomy presenta-
tion; SMALL CAPITALS show the code?, italics show comments
that we have added for this paper.

When applied to a particular knowledge base object, this
declaration provides the information necessary to guide all
three activities involved in constructing the presentation of
that object.

Extraction: GENERALIZATION is indicated as the relation
whose transitive closure is computed to determine the infor-
mation to be extracted. Because we want the specializations
of the “seed” event, it is indicated that it be used in
the REVERSE direction. Thus when applied to the “seed”
event init-handoff, this process finds its specializa-
tions, their specializations, and so on (in fact, our current
knowledge base does not contain any specializations beyond
the level of manual-init-handoff or automatic-
init-handoff).

Layout: UNBALANCED-TREE is indicated as the choice of
layout style, which causes the display of this abstract graph
structure as a (not necessarily balanced) tree. Applied to
init-handoff, this puts the node representing init-
handoff at the top, linked by the branches to its immedi-
ate specializations automatic-handoff and manual-
init handoff; if there had been further specializations
of these concepts in the knowledge base, they also would
have been displayed.

Portrayal: SHADOWED-CIRCLE is indicated as the choice of
how to portray the event objects. Function FOLDER-AND-
RELNAMES is indicated as the function to be used to generate
the label for each such object. Thus init-handoff, etc,,
are drawn as shadowed circles, labeled with the name of
the event, and the folder in which they reside (namely, the
handoff folder).

2Actual code shown in almost all its ugly detail—for clarity here, we
dropped the CommonLisp package prefixes, and changed a few names to
begin with KB, standing for the term Knowledge Base as used throughout
this paper.

5.2. Translation

Translation is used to input information into the ARIES’s
knowledge base, and to generate the textual contents of various
presentation forms. The external languages that ARIES connects
with through translation follow.

English—Concepts of our internal specification language
can be described in natural language by our paraphraser
tool. This is for output only—the system does not do natural
language understanding.
Reusable Gist—The behavior-oriented aspects of the spec-
ification are represented in Reusable Gist, a version of our
in-house specification language Gist that we have used for
many years [3]. The system automatically translates its
internal representation of specification knowledge into an
external Gist form which is much more palatable to human
comprehension. This translation goes in both directions—it
is also possible to enter or modify requirements and speci-
fication information by providing or modifying the external
form of Reusable Gist text, which the system parses and
translates into its internal representation.

Other formal languages—As discussed earlier, we need to

output portions of our specifications in the specification

language ERSLA, ready for the overall KBSA effort’s follow-
on phase of mechanical optimization. Also, we wished to
input information from knowledge bases built in the knowl-
edge representation language Loom [29] (a classification-
based knowledge representation language commonly used
within the Al community). In particular, we imported the

Penman Upper Model [4]—thus saving ourselves the effort

of recoding it from scratch. To do these imports and exports

we built one-way translators, from Loom to ARIES, and from

ARIES to ERSLA.

5.2.1. Translation Mechanisms: To provide translations be-
tween ARIES’s internal representation and the other formal
languages, we use Wile’s POPART system as the basis for
defining translators. POPART, when provided with a BNF-
like description of two languages, produces (among other

JOHNSON et al.: REPRESENTATION AND PRESENTATION OF REQUIREMENTS KNOWLEDGE 865

(instance—retrieval
wvariable (variable :name_aircraft type entity :determiner any ‘time present)

:predicate ﬁq’ueryi concept (reference :name flight-plan :class relation—declaration)

E:actuals (reference :name aircraft :class instance—declaration)

. (reference :name “Los A.” :class instance—declaration)
(reference :name “New B.” ‘class instance-declaration)))

. Internal
T . o . i Representation
r Match — establishing bindings for variables H
Leiceemmmnanaenannn i
a H |
n W W
s || (instance—retrieval variable lvariable#v :predicate \predicate#p)
H 7
a Recursively translate
' »
e any lever—iole#y | Ipredicatefp
Translation
7 Instantiate [/ rule
A »
- v
any aircraft | flight—plan(aircraft, “Los A.", “New B.") J R ble Gist

Fig. 11. Translation from the internal representation to Reusable Gist.

things) a capability for easy definition of translators between
those languages (see [41] and [42] for details). We use these
capabilities extensively.

As illustration, Fig. 11 shows the translation of an in-
stance retrieval concept into its equivalent Reusable
Gist form. The internal representation is shown in the top
box of the figure, and its external Reusable Gist equivalent
is shown in the bottom box. As can be seen from this small
example, the internal form is quite verbose, demonstrating
why this representation is for machine processing, not human
perusal! The translation rule for instance retrievals, shown in
the middle box, takes the form of an input pattern (its top line)
in the internal representation language, and an output pattern
(its bottom line) in the Reusable Gist language. Translation
proceeds by matching the input against the pattern; bindings
established by this are then recursively translated, and the
results instantiated in the output pattern to realize the result,
the Reusable Gist shown in the bottom box of the figure.
This recursive translation process is a feature of POPART’s
mechanisms, and saves us the tedium of explicitly coding the
recursive translation of substructures in many of the translation
rules.

Our complete translator from the internal representation to
Reusable Gist consists of a set of such rules, one for each type
of construct in the grammar of the internal representation. We
have similar rule sets to do translation in the reverse direction
(i.e., from Reusable Gist to the internal representation), and
to generate executable code for simulation as part of the
validation component (Section 6.2).

In defining the translation rules for producing Reusable Gist,
we invested some extra effort to cause them to use notational
abbreviations where possible. By notational abbreviations we
mean the syntactic shorthands that permit a more concise
expressive form for certain forms of expression, for exam-
ple, writing addition as in infix expression rather than as a
retrieval from a ternary relation (e.g., “3 + 4” rather than
“any integer | plus(3,4,integer)”). Reusable Gist
offers a number of such abbreviations, whereas the internal
representation eschews these in favor of a more uniform but

verbose style. A naive translation of the internal form that
did nothing in this direction would, we conjecture, produce
unsatisfactory output. We feel that our policy has the further
advantage of ensuring that Reusable Gist displayed by the
system always makes consistent use of these abbreviations.

We have opted for canonical layouts and translations to
provide uniformity and to postpone dealing with some of the
engineering issues involved in mixing user-initiated formats
with automatically generated formats. If the analyst manually
rearranges the layout of a diagram, ARIES maintains data
structures which enable it to present the revised layout until
modifications to the knowledge base dictate that the presen-
tation be updated. At this point, the user-initiated positions
are discarded. A similar capability exists for translations.
To preserve the exact form of Reusable Gist as entered by
the analyst would require retention of information that we
currently discard. Our choice to discard such information is a
compromise, insofar as we may imagine a more sophisticated
system that retained such stylistic choices, but its realization
would further complicate the representations3.

5.2.2. Generation of Natural Language: For completeness,
we briefly discuss ARIES’s generation of natural language
paraphrases. The tool that does this was originally developed
as part of the Knowledge-Based Specification Assistant, one
of the precursors to ARIES, and has been described extensively
elsewhere [31], [38]. Pertinent to this paper is the point that the
paraphraser is treated as just another tool to convert between
representations.

We also note that the paraphraser was originally constructed
to operate on what evolved into the ARIES metamodel represen-
tation (in contrast to, say, hard-wiring it to the surface syntax
of the specification language). This proved to be beneficial
when the paraphraser was later converted to be part of the
Concept Demonstration project, and to operate on the ERSLA
language, as reported in [43]. This lends credence to our faith
in the utility of the metamodel foundations of the internal
representation.

5.3. Summary of Presentation Issues

In summary, to populate ARIES with a wide variety of
flexible presentations, we use a declarative style of definition,
in which the system builder selects from a number of provided
building blocks to compose the features of the presentation
he/she desires. We have chosen to separate the phases of i)
extracting the subset of the knowledge base information to
portray, and ii) displaying that information in an appropriate
form. We have found that:

« the underlying knowledge representation is suited to
defining extraction of knowledge; previous work involv-
ing the natural language paraphraser reported similar
advantages;

« we were able to define a variety of presentation styles,
making use of the abstracted form of the information as
an aid to their construction;

3 Furthermore, we may imagine an ideal system that, in response to changes
in the information being portrayed, would incrementally adjust an analyst-
tuned presentation to remain in keeping with the analyst’s style!

866 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, OCTOBER 1992

+ we were able to define a variety of diagrammatic pre-
sentations defined declaratively in terms of those styles;
and

* use of POPART’s grammar support tools facilitated our
construction of several automatic formal-language to
formal-language translators.

We have consistently maintained an emphasis on flexibility
(ease of definition and subsequent modification of presenta-
tions), at the expense of a less efficient, and not as finely tuned,
interface. Until we have more confidence in the precise nature
of presentations best for supporting the analysis process, we
feel constrained to make such choices.

Translation is used to connect the ARIES internal represen-
tation and various external representations. We make use of
the POPART system to provide the mechanisms from which
to build translators. Our ability to use POPART’s parse-tree
representations is crucial to this, and reinforces the importance
of having linked these representations with the relational
database, as was discussed earlier in Section 4.7.

V1. EVOLUTION AND ANALYSIS

In the first section we identified evolution and analysis
as important activities within the requirements/specification
process, alongside acquisition and presentation. In this section
we briefly summarize our work toward their support, and how
it relates to the issues of representation and reasoning.

6.1. Evolution

ARIES supports evolution through its diagrammatic presen-
tations—the user conducts manipulations that are meaningful
and intuitive with respect to the presentation currently being
viewed, and the system makes the corresponding changes to
the underlying representation. This was briefly alluded to in
the state-transition diagram development example of Section
III. We now outline the mechanisms that make this possible.

The ARIES system currently has over 180 evolution transfor-
mations—operators that modify system descriptions in a con-
trolled fashion (e.g., define-and-check-enabling-
state that we saw applied in the example scenario to
define and use enabling conditions on an event). In making
these available to the analyst, we have had to avoid two
pitfalls that would have rendered them unusable. First, it
would be inappropriate to expect the analyst to select from
a linear menu of these transformations, or even from sub-
menus coarsely organized into general categories. Second, it
would be inappropriate to hard-wire transformations to editing
actions, since the analyst may have only a rough idea of the
modification desired and can benefit from ARIES’s assistance in
accessing a meaningful collection of related transformations.

To avoid these pitfalls, ARIES has been constructed to
support the following mode of interaction: The analyst se-
lects the appropriate transformations through indicating the
desired effects on a given presentation, and the system re-
trieves the transformation(s) that will or may achieve those
effects—typically, this will be a small subset of all possible
transformations, and it is much more reasonable to expect
the analyst to make further selections as necessary from this

subset. Furthermore, the transformations are organized in a
specialization hierarchy, following the same principles for
event subsumption as that described in Section 4.3.1—this
makes sense because transformations are simply a category
of events, and are modeled explicitly as such in the ARIES
knowledge base. The system is able to perform this retrieval
because each evolution transformation is characterized by its
effects on each of the dimensions of semantic properties. The
fundamentals of our approach are as follows.
Effect descriptions—a goal-oriented description which char-
acterizes modifications in terms of their effects on each
of several semantic dimensions. The effect description lan-
guage is less expressive than the full precondition and post-
condition representation of ARIES, but expressive enough to
support detailed retrievals and classifications.
Linking evolution transformations to effects—each evolu-
tion transformation is characterized by the effects that it
achieves. ARIES is able to analyze evolution transformations
to determine some of their effects. This analysis is, when
necessary, supplemented by developer-provided informa-
tion.
Linking presentations to effects—each presentation has
available certain obvious and intuitive manipulations,
known as gestures. The analyst’s chosen gestures are linked
to the corresponding effects, and these in turn are used to
select transformations.

The benefit of this staged approach is that the analyst can
directly modify presentations in an intuitive manner (e.g.,
create a node in a state-transition diagram), and have the
system make the corresponding changes to the underlying
knowledge representation (e.g., create a representation of a
new state corresponding to the state-transition diagram’s new
node). Also, this multistage approach makes it far easier to
add new presentations and new transformations.

The keys to making this possible are the capabilities pro-
vided by the underlying representation language, and the use of
this language and the tools that operate on it to represent and
analyze the transformations themselves. The reader seeking
further details of this aspect of the system is referred to [26].

6.2. Validation

While presentations help us to understand and develop
specifications, we need additional tools to inform us about
the dynamic behavior of specifications, and help us to vali-
date emerging specifications. Validation at this level is often
characterized as validation with respect to the client’s or
stake-holder’s intent. The goal of validation is to identify
those aspects of the specification which do not conform to
the client’s intent and then to make appropriate changes.
More prosaically, this boils down to uncovering errors in the
specification and fixing them.

In ARIES we use simulation to provide validation of dynamic
behavior. However, for most realistically sized application
domains, the following factors inhibit tractable simulation used
for validation.

» The specification, particularly at the early stages of the

requirements acquisition and specification development

JOHNSON et al.: REPRESENTATION AND PRESENTATION OF REQUIREMENTS KNOWLEDGE 867

process, may contain undefined or partially defined terms.

+ The specification may not be directly compilable into a
sufficiently efficient implementation.

+ Once compiled, the simulation of a specification may
produce voluminous amounts of data, so voluminous that
it is effectively incomprehensible.

In ARIES, we mitigate these problems by decomposing the
validation process into a collection of validation activities,
each of which revolves around resolving a Validation Ques-
tion. Such a focus allows the analyst to abstract out of the
specification those details unrelated to the current validation
question. This results in a smaller specification which is much
more tractable—it will have far fewer undefined or partially
defined terms, it will compile into a more efficient simulation,
and the details of the simulation will be only those pertinent
to answering the particular validation question. See [5] and [6]
for more details. Note the similarity between abstraction and
extraction for the purposes of analysis, and for the purposes
of presentation as discussed earlier in Section 4.6. Many of
the same problems, and responses to those problems, arise in
constructing specifications for simulation.

We are also working toward visualization of the running
simulation through animated presentations that also have used
these techniques to provide focus on specific portions of the
overall behavior.

VII. RELATED WORK

Several other efforts have investigated connecting particular
instances of alternative presentations of the same information.
For example, Fraser ef al. [15] connect a graphical presen-
tation of requirements (Structured Analysis) to the formal
language of the Vienna Development Method; similarly, Dick
and Loubersac [12] connect Entity-Structure Diagrams and
Operation-State Diagrams to VDM. ARIES goes beyond these by
providing support for building such connections (the POPART
translation mechanisms—Section 5.2.1, and the linkage of
parse-tree representations to the APS relational database repre-
sentation—Section 4.7), and has used this to construct multiple
such connections.

Some CASE tools, such as STATEMATE, also support multiple
notations. Where ARIES differs from these systems is that in
CASE tools the notations are required to convey distinct infor-
mation, so that edits to one diagram do not result in changes to
other diagrams. In ARIES the information conveyed in different
presentations may overlap. For example, the Reusable Gist
presentation describes many aspects of a system that can also
be presented by narrower presentations such as information
flow diagrams or state transition diagrams. In this respect
ARIES is similar to the PECAN system, which allows programs
to see textual and flow-chart views of programs at the same
time [37]. Where ARIES differs is that it allows analysts to
edit most of these presentations, and edits to one presentation
can result in changes to other presentations. In PECAN only the
textual presentation can be edited, and other views are read-
only. ARIES makes use of a general mechanism for mapping
presentations onto a common underlying representation. This
scheme makes it possible to provide multiple editable nota-

tions, and map changes onto the underlying representation as
well as onto other notations.

Perhaps the work closest to ARIES is that of the PRISMA
project [34] (also a system for assisting in the construction
of specifications from requirements), and the “viewpoints”
framework [14] (essentially a generalization of the ideas
embodied in PRISMA). Like ARIES, these efforts stress the
use of multiple presentations of the (emerging) specification,
graphical displays of these, and a semantic-net formalism
underlying each (in PRISMA, the presentations—“views” in
their terminology—that they have explored are data-flow di-
agrams, entity relationship models, and petri nets). Unlike
ARIES, they do not employ a single, all-encompassing inter-
nal representation, rather, they advocate the use of pairwise
connections between the representations. This necessitates the
definition of n? connections in order to completely connect
n presentations, whereas in ARIES we need define only n
(one connection to the internal representation for each of the
n presentations). Also, ARIES’s tools support the construc-
tion of these connections, whereas these other efforts appear
to have defined the connections in a more ad-hoc manner.
Finally, ARIES has gone further in support of evolution, as
discussed in comparison to PECAN. Conversely, PRISMA has
gone further toward defining heuristics that operate upon their
presentations (e.g., consistency and completeness checkers,
both within single presentations, and between pairs of pre-
sentations), an aspect that we have only recently begun to
address.

There are some other aspects of our approach that we feel
deserve brief comparison with other work.

Expressiveness—Swartout and Smoliar [40] have argued
_ for expressiveness in representations—even at the risk of

falling over Brachman and Levesque’s “computational cliff”
[9}—when representing the knowledge underlying software
design. ARIES is an illustration of the validity of this
position. Work that takes the opposite tack, of limiting
expressiveness in order to retain computational tractability,
is typified by the CLASSIC system [7], and the COMET system
[30]. In both cases languages with limited expressiveness
are employed in order to facilitate automatic classification.
Generally, the focus of these efforts is on dealing with
descriptions that capture some, but by no means all, aspects
of the objects in question (software components and the
like). In contrast, ARIES aims to capture more complete de-
scriptions (e.g., we must at least capture enough information
to be able to generate specifications from which to derive
implementations). Our need for high expressivity means
we have had to abandon the guarantee of fully automatic
analysis of the contents of our knowledge base, and we rely
upon human fine-tuning of the approximate analysis that
our tools are able to perform. The crux of the distinction is
whether one aims to deals with only partial descriptions, or
with complete specifications.

Interchange—The goal of having a representation that can

be mapped onto a variety of different representations is also

the motivation for the Knowledge Interchange Format effort

[16]. Our emphasis is on a common internal knowledge

representation instead of a representation for transmission

868 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 10, OCTOBER 1992

of knowledge, but the goal of a common denominator of
linguistic expression is the same.

Structuring—In applying ARIES to representing portions of
air traffic control requirements, we encountered the need to
deal with, particularly in regard to structure, large volumes
of knowledge. Our approach to structuring has much in
common with others investigating sharable, reusable knowl-
edge bases [33]. Folders in ARIES bear some similarity to
microtheories in cyC [18], and to Doug Smith’s domain
theories. The use of workspaces as a metaphor for develop-
ment or representations, and the mediation of by intelligent
tools via interactive diagrammatic presentations, has been
explored by Terveen [40].

Group support—ARIES’s structuring mechanisms (folders
and workspaces) allow multiple analysts to keep separate
their own context of work while giving them continued
access to shared knowledge, but overall ARIES provides little
in the way of support for group activities such as project
management, software process modeling, negotiation, and
coordination among multiple analysts, co-authoring, capture
of discussions and rationales arising from group meetings,
and the like. This is the broad area of focus of the DAIDA
framework [20]. More specifically, see [13] for analogy
heuristics that identify and reconcile differences between
multiple analysts’ expressions of (supposedly) the same
requirements. Techniques such as these, that rest upon a
shared representation, should be quite compatible with the
ARIES model.

VIII. SUMMARY

This paper has described the approach to representation
and presentation of knowledge used in ARIES in support of
domain analysts in modeling the target domains for software
development, and systems analysts in entering and formalizing
system requirements. Our approach can be viewed as applying
the notion of a presentation architecture to the domain of
software engineering, and incorporating a strong coupling to
a transformation system.

The key feature of the approach is to have a single highly ex-
pressive underlying representation, interfaced simultaneously
to multiple presentations, each with notations of differing
degrees of expressivity. This allows analysts to use multiple
languages for describing systems, and have those descriptions
yield a single consistent model of the system. We have also
attempted to support automated reasoning on this underlying
representation, without sacrificing expressiveness.

In the matter of interfacing multiple notations to a single
representation, we can point to several accomplishments. Our
architecture makes it quite easy to generate different pre-
sentations, and to define new kinds of presentations. For a
wide range of notations, it is also easy to define multiple
editable presentations, so that analysts can enter information
in many different ways. The approach works because we have
provided support both for defining abstractions and projections
of the underlying knowledge base, and for portraying such
information in various styles.

There are some limitations to the approach which still must
be overcome. One problem with our approach is that it focuses
on recording the underlying semantics of presentations, instead
of details of their syntactic form. For example, when an
analyst constructs a flow diagram, ARIES does not record
the exact position of each node in the diagram, so if the
diagram is recreated later it may not have quite the same shape.
This problem could be readily eliminated by including layout
information as part of the representation when the analyst has
explicitly chosen a particular layout.

Another problem arises when a diagram, or an edit to a
diagram, cannot be mapped onto the underlying representation
in a unique way. This problem arises whenever multiple
expressions in the underlying representation all are expressed
in the same way in a given notation. Three approaches have
been employed to cope with this problem: 1) to assume a
canonical internal form to map from the external notation to
the internal representation, 2) to perform modifications via
transformations that operate on the underlying representation
in unambiguous ways, and 3) simply to disallow editing of
certain presentations. None of these approaches is suitable in
all cases. Furthermore, there is reason to believe that a fourth
approach might be better, namely to delay the translation
process until a commitment to a particular underlying form
is necessary.

The technique of supporting multiple semantic abstractions
and projections also enables us to have automated reasoning
capabilities without sacrificing expressiveness. Nevertheless,
the automated reasoning capabilities in ARIES are weaker
than they could, or should, be. Some automated reasoning
capabilities could be attained simply by making greater use
of automated reasoners such as Loom. If there is a limitation,
it is that the underlying semantic representation supports
intractable inference for which there is no counterpart in the
abstracted representations. For example, determining whether
one specification is a specialization of another is intractable in
general. From our point of view, this is not really a limitation.
If a person must occasionally verify that one specification is a
specialization of another, that is not a problem, as long as the
machine can automatically derive specialization relationships
in other cases. What we hope to attain, and what we believe
we have attained, is reasoning that employs an appropriate
combination of human capabilities and human insight.

ACKNOWLEDGMENT

C. Rich has given helpful advice to this project. The authors
would like to acknowledge current and previous members of
the ARIES project: K. Benner, J. Myers, K. Narayanaswamy,
I. Runkel, and L. Zorman. K. Benner helped significantly in
the preparation of this document. Considerable feedback from
the editors and their cadre of reviewers has also helped clarify
our presentation.

REFERENCES

[1] M. Alford, “SREM at the age of eight: The distributed computing design
system,” I[EEE Computer, vol. 18, Feb. 1985.

[2] ASA, Airman’s Information Manual, Aviation Supplies and Academics,
1989,

JOHNSON et al.: REPRESENTATION AND PRESENTATION OF REQUIREMENTS KNOWLEDGE 869

(3]

[

[10]
[11]

[12]

[13]

[14]

{16]

[17])

[18]
[19]

[20

—=

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]
[29]
[30]
B1]
[32)
[33]

[34]

R. Balzer et al., “Operational specification as the basis for specification
validation,” in Theory and Practice of Software Technology, pp. 21-49.
Amsterdam: North-Holland, 1983.

J. Bateman, “Upper modeling: Organizing knowledge for natural lan-
guage processing,” in Proc. 4th Int. Nat. Lang. Generation Workshop,
June 1990.

K. Benner, “Using simulation techniques to analyze specifications,” in
Proc. 5th KBSA Conf., pp. 305-316, 1990.

, “The ARIES Simulation Component,” submitted to the 7th
Annual RADC Knowledge-Based Software Engineering (KBSE) Con-
ference.

A. Borgida et al,, “CLASSIC: A structural data model for objects,” in
Proc. ACM SIGMOD 89 Conf. , June 1989.

A. Borgida, S. Greenspan, and J. Mylopoulos, “Knowledge representa-
tion as the basis for requirements specifications,” IEEE Computer, vol.
18, pp. 82-91, 1985.

R. Brachman and H. Levesque, “The tractability of subsumption in
frame-based description languages,” in Proc. Third National Conf.
Artificial Intelligence, pp. 34-37, 1984,

D. Cohen, “Symbolic execution of the Gist specification language,” in
Proc. 8th Int. Joint Conf. Artificial Intelligence,, pp. 17-20, Aug. 1983.
. AP5 Manual. USC-Information Sciences Institute, June 1989.
(draft).

J. Dick and J. Loubersac, “Integrating structured and formal methods: A
visual approach to VDM,” in Proc. 3rd European Software Engineering
Conf.,. pp. 37-59, 1991.

J. C. S. do P. Leite and P. A. Freeman, “Requirements validation
through viewpoint resolution,” IEEE Trans. Software Eng.,, vol. 17, pp.
1253-1268, Dec. 1991.

A. Finkelstein, J. Kramer, B. Nuseibeh, and L. Finkelstein, “Viewpoints:
A framework for integrating multiple perspectives in system develop-
ment,” Int. J.Software Engineering and Knowledge Engineering, 1992
(to appear).

M. D. Fraser, K. Kumar, and V. K. Vaishnavi, “Informal and formal
requirements specification languages: Bridging the gap,” IEEE Trans.
Software Eng., vol. 17, pp. 454-466, May 1991.

M. Genesereth er al., “Knowledge Interchange Format,” Tech. Rep.
Logic-90-04, Stanford University, 1990.

C. Green et al., “Report on a knowledge-based software assistant,” in
Readings in Artificial Intelligence and Software Engineering, C. Richard
and R. Waters, Eds. Los Altos, CA: Morgan Kaufmann, 1986.

R. V. Guha and D. B. Lenat, “Cyc: A midterm report,” Al Magazine,
vol. 11, pp. 32-59, 1991.

J. Hagelstein, “Declarative approach to information system require-
ments. J. Knowledge-Based Systems, vol. 1, pp. 211-220, Sept. 1988.
U. Hahn, M. Jarke, and T. Rose, “Teamwork support in a knowledge-
based information systems environment,” IEEE Trans. Software Eng.,,
vol. 17, pp. 467-482, May 1991.

D. Harris and A. Czuchry, “KBRA: A New Paradigm for Requirements
Engineering,” IEEE Expert, vol. 3, 1988.

V. Hunt and A. Zellweger, “The FAA’s Advanced Automation System:
Strategies for future air traffic control systems,” IEEE Computer, vol.
20, pp. 19-32, Feb. 1987.

W. L. Johnson, “Deriving specifications from requirements,” in
Proc.10th Int. Conf. Software Engineering, pp. 428-437, 1988.

, “Specification as formalizing and transforming domain knowl-
edge,” in Proc. AAAI Workshop on Automating Software Design, pp.
48-55, 1988.

W. L. Johnson and M. S. Feather, “Reusable Gist language description,”
available from USC/ISI, 1991.

, “Using evolution transformations to construct specifications,” in
Automating Software Design, pp. 65-92, AAAI Press, 1991.

W. L. Johnson, M. S. Feather, and D. R. Harris, “Integrating domain
knowledge, requirements, and specifications,” J. Syst. Integration, vol.
1, pp. 283-320, Nov. 1991.

H. A. Kautz and J. F. Allen, “Generalized plan recognition,” in Proc.
AAAI-86, pp. 32-37, 1986.

R. Mac Gregor, Loom Users Manual, 1989.

W. Mark, IEEE Trans. Software Eng., this issue.

J.J. Myers and W. L. Johnson, “Toward specification explanation: Issues
and lessons,” in Proc. 3rd Annual RADC Knowledge-Based Software
Assistant (KBSA) Conference 1988, pp. 251-269, 1988.

K. Narayanaswamy and N. M. Goldman, “A flexible framework for
cooperative software development,” J. Syst. Software, Oct. 1991.

R. Neches er al, “Enabling technology for knowledge sharing,” Al
Magazine, pp. 36-56, Fall 1991,

C. Niskier, T. Maibaum, and D. Schwabe, “A look through PRISMA:

Toward pluralistic knowledge-based environments for software specifi-
cation acquisition,” in Proc. 5th Int. Workshop on Software Specification
and Design, pp. 128-136, 1989.

[35] “The KBSA Project. Knowledge-Based Specification Assistant,” Final
report (available from USC/Information Sciences Institute), 1988.

[36] Refine User’s Guide, Reasoning Systems, Palo Alto, CA. 1986.

[37] S.P. Reiss, “Pecan: Program development systems that support multiple
views,” IEEE Trans. Software Eng., vol. SE-11, pp. 276-285, Mar. 1985.

[38] W. Swartout, “Gist English generator,” in Proc. Nat. Conf. Artificial
Intelligence, pp. 404409, 1982.

[39] W. Swartout and S. Smoliar, “Report from the frontiers of knowledge
representation,” USC/ISI Tech. Rep., 1988.

[40] L. Terveen, “Person-computer cooperation through collaborative manip-
ulation,” Tech. Rep. ACT-AI-048-91, MCC, 1991.

{41] D. S. Wile, “Integrating syntaxes and their associated semantics,”
available from the author at USC/Information Sciences Institute, 4676
Admiralty Way, Marina del Rey, CA 90292, USA—wile@isi.edu.

[42] —, “Organizing programming knowledge into syntax-directed ex-
perts,” in Proc. Int. Workshop on Advanced Programming Environments,,
pp. 551-565, 1986.

[43] G. B. Williams and J. J. Myers, “Exploiting metamodel correspondences
to provide paraphrasing capabilities for the KBSA Concept Demonstra-
tion project,” in Proc. 5th Annual RADC Knowledge-Based Software
Assistant (KBSA) Conf., pp. 331-345, 1990.

W. Lewis Johnson received the A.B. degree in lin-
guistics from Princeton University in 1978, and the
M.Phil. and Ph.D. degrees in computer science from
Yale University in 1980 and 1985, respectively.

He is Project Leader at the Information Sci-
ences Institute of the University of Southern Cal-
ifornia and is a research assistant professor in the
USC Computer Science Department. He is inter-
ested in applying artificial intelligence techniques
in the areas of systems engineering and design and
in computer-based training. His research interests
focus on the development of computer systems that can coliaborate with
people in order to solve problems.

Martin S. Feather received the B.A. and M.A.
degrees from Cambridge University, England, in
1975 and 1976, respectively, and the Ph.D. degree
in artificial intelligence from Edinburgh University,
Scotland, in 1979.

In October 1979, he joined the Information Sci-
ences Institute, University of Southern California,
where he has since become a Research Scientist
working on program specification and transforma-
tion. His research interests are in formalizing and
providing mechanized support for the programming
process.

Dr. Feather is a member and secretary of IFIP Working Group 2.1.

David R. Harris received the B.S. degree in mathe-
matics from Cleveland State University in 1966, and
the M.S. degree in mathematics from Northeastern
University in 1968.

He joined Lockheed Sanders in 1981, and is
now a mathematician, developing knowledge-based
techniques for improving system and software en-
gineering. He has been a principal investigator on
projects ranging from specialized support for auto-
matic test equipment engineering to general purpose
support for requirements acquisition and analysis.
His research interests include tools for user interface design and construction,
and the use of automated deduction to assist in complex analysis and
engineering tasks.

